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1. INTRODUCTION

A number of applied problems in
atmospheric dispersion require the prediction of
vertical and lateral turbulence intensities near
the ground as a function of the local atmospheric
stability. We have investigated 0,/uy over a
wide range of stabilities at two desert sites in
Nevada and California. The study was part of a
meteorological baseline for field tests of
atmospheric dispersion during liquified natural
gas (LNG) spills. The data collected at Frenchman
Flat (Nevada Test Site) during neutral and stable
cases seem to be remarkably different from those
of other published studies and lead us to
hypothesize that, under certain conditions,
different semi-empirical approaches would be
required to predict turbulence intensities.

2. THEORY

The relationship between vertical
turbulence intensity, 0,/us, and Monin-Obukhov
stability parameter, z/L, is generally agreed to
approach the free-convection limit:

Oy/ux = A-2/LV/3 gy >> 0 (1)
For example, Panofsky et al. (1977) have surveyed
a number of field studies and derived an empirical
expression meeting both the condition of Eq. (1)
and a congensus of neutral and stable results
that show:

0, /us = 1.3 z/L >0 . (2)
Binkowski (1979} has developed a semi-empirical
method for obtaining second moment closure to the
turbulent energy equation yielding a predictive
formulation for O /us as a function of z/L,
which has the same essential properties of (1)
and (2). This result agreed with field data from
Kansas and Minnesota. From this and other efforts
to effect closure of the turbulent energy
equations (Herbert and Panhans, 1979, Panhans and
Herbert, 1979), it becomes evident that the
success of the Oy/ux prediction rides on the
success of relating the scaled momentum parameter
éy to z/L, where

Py = (kz/u,) du/dz . (3)

. On the other hand there is less
likely a unique dependence of lateral turbulence
intensity, Oy/us., upon z/L. This may be due in
part to the influence of the depth of the mixed
layer (Panofsky et al., 1977) on 0,/u,.

3. EXPERIMENTAL OBSERVATIONS

At Prenchman Flat on the Nevada Test
Site a 62 meter meteorological tower was
instrumented with vertical propellor anemometers,
sensitive wind vanes and cup anemometers, and
aspirated thermistors. Each of these were
scanned once a second with RMS and averages
determined every three minutes by a
microprocessor-based data acquisition system.
The data of September~November 1979 were analyzed
to determine usx and L from profile measurements
between 3 and 10 meter heights, while Oy and
O, data from each of two levels were averaged.

Data representative of the 5.5 height
above ground showed features unlike other studies
(Figure 1), We eliminated from the analysis
periods when sensors would be near their
thresholds (u < 1.5 m/s), and because of the
wealth of data (n = 1925) chose to plot only the
medians and upper and lower quartiles for each
z/L value. We observed a steep gradient of
cw/u* near neutral stability rather than an
approach to the expected constant of Eg. 2. We
also observed much lower turbulence intensities
under stable conditions than commonly reported.
The distinguishing features of this site are an
extremely small surface roughness (zy = 1075 p)
and a homogeneocus upwind fetch for 3 km due to
the flat playa. Since care was taken with the
observations and analysis, we believe that what
we have observed is a natural effect of the
surface roughness and the lack of influence of
mesoscale, organized flows during stable
conditions. The characterisitic eddy structure
may be expressed by the ratio 0y/0y. We
found that o, and g, were highly correlated
(r = 0.9) regardless of z/L, giving confidence
that the sensors were not anomalous since O
and 0, are measured by separate devices.

A value crv/ow = 4.1 was observed
at Frenchman Flat which was high compared to a
value of 2.4 observed by us over rougher surfaces
in a desert at China Lake, Naval Weapons Center,
California. A value of 1.5 has been reported for
rougher surfaces under neutral conditions
(Binkowsky, 1979). We believe that the large
value of 0,/0, at Frenchman Flat indicates a
reduced magnitude of O, relative to g, due to
decreased roughness. Thus under certain
conditions, better parameterization is required.

On the other hand, our data agree
very well with Eq. 1 (A = 2.1) and also agree
with the results of Binkowski for unstable
conditions.
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Figure 1. Vertical turbulence intensity versus
atmospheric stability for 1925 samples at
Frenchman Flat (Sept-Oct, 1979); solid line is
median value, dotted lines are first and third
gquartiles, and dashed line is predicted value
from Clarke-Delsol model.

4. DISCUSSION

We have found that semi-empirical
predictive formulas which fit data over rougher
surfaces and predict higher turbulent intensities
for neutral and stable cases (Eg. 2) must be
rejected for the smooth desert. However, based
upon the hypothesis that a Prandtl-type closure
condition would define the characteristic scale
and consequently 0,/u,, we assume:

where k is Karman's constant. From Eq. 3:
Oy/us ~ L/by (5}

Following Herbert and Panhans (1979), we choose
the Clarke-Delsol parameterizations:

by = (1 - 15 z/L)"11/40 ;. < 9 (6a)

b = (1 +5 2/L)/(1 + az/L
+ 50(z/L)2)  0<z/1<1 (6b)
o = 6/(1 + 6az/L)  z/1>1 (6¢)

where o = 0.0079 .

The results of predicting O, /us by (5) and (6)
are shown in Figure 1. Much better agreement in
the neutral and stable case is obtained.
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